Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Einstein’s general theory of relativity from 19151remains the most successful description of gravitation. From the 1919 solar eclipse2to the observation of gravitational waves3, the theory has passed many crucial experimental tests. However, the evolving concepts of dark matter and dark energy illustrate that there is much to be learned about the gravitating content of the universe. Singularities in the general theory of relativity and the lack of a quantum theory of gravity suggest that our picture is incomplete. It is thus prudent to explore gravity in exotic physical systems. Antimatter was unknown to Einstein in 1915. Dirac’s theory4appeared in 1928; the positron was observed5in 1932. There has since been much speculation about gravity and antimatter. The theoretical consensus is that any laboratory mass must be attracted6by the Earth, although some authors have considered the cosmological consequences if antimatter should be repelled by matter7–10. In the general theory of relativity, the weak equivalence principle (WEP) requires that all masses react identically to gravity, independent of their internal structure. Here we show that antihydrogen atoms, released from magnetic confinement in the ALPHA-g apparatus, behave in a way consistent with gravitational attraction to the Earth. Repulsive ‘antigravity’ is ruled out in this case. This experiment paves the way for precision studies of the magnitude of the gravitational acceleration between anti-atoms and the Earth to test the WEP.more » « less
- 
            Abstract The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. Here, we report on the use of laser cooled Be + ions to sympathetically cool a large and dense plasma of positrons to directly measured temperatures below 7 K in a Penning trap for antihydrogen synthesis. This will likely herald a significant increase in the amount of antihydrogen available for experimentation, thus facilitating further improvements in studies of fundamental symmetries.more » « less
- 
            A<sc>bstract</sc> An angular analysis ofB0→ K*0e+e−decays is presented using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The analysis is performed in the region of the dilepton invariant mass squared of 1.1–6.0 GeV2/c4. In addition, a test of lepton flavour universality is performed by comparing the obtained angular observables with those measured inB0→ K*0μ+μ−decays. In general, the angular observables are found to be consistent with the Standard Model expectations as well as with global analyses of otherb → sℓ+ℓ−processes, whereℓis either a muon or an electron. No sign of lepton-flavour-violating effects is observed.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            A<sc>bstract</sc> A search for the decay$$ {B}_c^{+} $$ → χc1(3872)π+is reported using proton-proton collision data collected with the LHCb detector between 2011 and 2018 at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. No significant signal is observed. Using the decay$$ {B}_c^{+} $$ →ψ(2S)π+as a normalisation channel, an upper limit for the ratio of branching fractions$$ {\mathcal{R}}_{\psi (2S)}^{\chi_{c1}(3872)}=\frac{{\mathcal{B}}_{B_c^{+}\to {\chi}_{c1}(3872){\pi}^{+}}}{{\mathcal{B}}_{B_c^{+}\to \psi (2S){\pi}^{+}}}\times \frac{{\mathcal{B}}_{\chi_{c1}(3872)\to J/\psi {\pi}^{+}{\pi}^{-}}}{{\mathcal{B}}_{\psi (2S)\to J/\psi {\pi}^{+}{\pi}^{-}}}<0.05(0.06), $$ is set at the 90 (95)% confidence level.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            The branching fraction of the decay , relative to the topologically similar decay , is measured using proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of . The ratio is found to be , where the first uncertainty is statistical and the second systematic. Using the world-average branching fraction for , the branching fraction for the decay is found to be , where the first uncertainty is statistical, the second systematic, and the third is due to the branching fraction of the normalization channel. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract This paper presents the first measurement of$$\psi {(2S)}$$ and$$\chi _{c1}(3872)$$ meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ )$$\pi ^+\pi ^-$$ final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ and$$p_{\textrm{T}} (\text {tag})$$ bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A search for violation in and decays is presented using the full Run 1 and Run 2 data samples of collisions collected with the LHCb detector, corresponding to an integrated luminosity of at center-of-mass energies of 7, 8, and 13 TeV. For the Run 2 data sample, the -violating asymmetries are measured to be and , where the first uncertainty is statistical and the second is systematic. Following significant improvements in the evaluation of systematic uncertainties compared to the previous LHCb measurement, the Run 1 dataset is reanalyzed to update the corresponding results. When combining the Run 2 and updated Run 1 measurements, the final results are found to be and , constituting the most precise measurements of these asymmetries to date. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « lessFree, publicly-accessible full text available May 1, 2026
- 
            A<sc>bstract</sc> TheΥ(2S) andΥ(3S) production cross-sections are measured relative to that of theΥ(1S) meson, as a function of charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of 13 TeV. The measurement uses data collected by the LHCb experiment in 2018 corresponding to an integrated luminosity of 2 fb−1. Both theΥ(2S)-to-Υ(1S) andΥ(3S)-to-Υ(1S) cross-section ratios are found to decrease significantly as a function of event multiplicity, with theΥ(3S)-to-Υ(1S) ratio showing a steeper decline towards high multiplicity. This hierarchy is qualitatively consistent with the comover model predictions, indicating that final-state interactions play an important role in bottomonia production in high-multiplicity events.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
